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We discuss the localization of electronic eigenfunctions and vibrational excitgtitmstons”) on self-
similar percolation clusters at criticality on the Cayley treedin2, and ind= 3, both in topological £) and
in Euclidian () space. We find that the localization behavior of electrons and fractons is very similar, but does
depend on the type of average performed and on the number of configundtiaken into account. It can be
characterized by three different localization regimes. In the first regime, at small distarares$r from the
localization center, electrons and fractons are superlocalizedsipace, while the localization is not exponen-
tial in r space. In the intermediate regime, which is the most important one, we find stretched exponential
localization (“sublocalization”), In(y)~—/%./ or ~—r%. with effective localization exponents
dy ,~dy ~0.6. In the third regime, for large” andr, the averages strongly depend on the number of
configurations, even i’ space, and superlocalization ,,dy ,>1) is observed, converging to simple
exponential behavior asymptotically. To understand this complicated localization behavior, we present an
analytical calculation of Iqy) for the third regime, which is based on the fact that the local amplitudes at large
distances from the localization center obey a log-normal distribuf®h063-651X97)12012-9

PACS numbe(s): 64.60.Cn, 71.55.Jv, 63.56x

[. INTRODUCTION excitations suggest, ,=1 [15,10. Most numerical calcula-
tions seem to be in accord witti, =1 [13], while one

It is well known that in disordered structures, due to thesimulation favorsd,, , = d, [14].
absence of translational symmetry, electronic wave functions Most previous analytical results are based on the assump-
and vibrational excitations can be localizeld-4] i.e., their  tion that the chemical distaneéfrom the localization center
amplitudes decrease with increasing distance from a localizgrather than the air distaneg characterizes the localization
tion center for certain energigsand frequencies, respec-  behavior. The chemical distan¢also called topological dis-
tively. Apart from its principal relevance, the knowledge of tance between two points on a percolation cluster is defined
the localization behavior in disordered self-similar systems isas the shortest path distance on the cluster. Assuming that the
relevant for a large number of both experimental and theoamplitudesy, at sites at fixed chemical distangefrom the
retical issues, ranging from the disorder-induced metaliocalization center have a very narrow distribution and decay
insulator transitior}3,5,6) to the thermally activated hopping proportional to exp—const< /], the behavior of the ampli-
conductivity in disordered systenig—-9]. A standard model tudes in ‘r space” can be derived from the behavior in
for disordered systems is the percolation mofE0,11.  space” by a convolution integral, which contains the struc-
Close to the critical concentration, self-similar structuresture function of percolation clusteks(/|r) [18,17,1Q. The
(“fractals™) occur, and it is an open question, how the aver-analytic treatment yields two distinct localization regimes,
aged eigenfunctions decay spatially on these structures anfl, =1 for intermediater [r;<r<r(N)] anddy = dmi
how this decay depends on the averaging procedure, espir larger [r>r(N)]. Here,r, is of the order of the local-
cially on the numbeN of configurations taken into account ization length\,, andr . (N) increases logarithmically with
in the average. N [17].

It is well accepted that asymptotically the mean ampli- The aim of this paper is twofold: First, for checking the
tudes decay proportional to gxpconstx r%.r] with increas-  basic assumption of the analytical theory cited above, we
ing “air” distance r from the localization center, but differ- study, for both electronic wave functions and vibrational ex-
ent groups report on different localization exponedts, citations (“fractons™) on large percolation clusters at criti-
[12-17. For a “quenched” logarithmic average, where the cality, the distribution of the amplitudes at fixed chemical
fluctuations of the amplitudeg,(r) at siten at fixed dis- distance/” from the localization center, where the eigenfunc-
tancer are strongly diminished by averaging ovewyl(r), tions take their maximurhl9], and investigate the decay of
d,,r=dmin has been predictefd 6], wheredy, is the fractal the mean amplitudes as a function/6f Then, we study the
dimension of the shortest path on the percolation cluster cordecay of the mean amplitudes as a function of the spatial
necting two distant points on the cluster. It has been arguedistance from the localization center. We find that the mean
that also for the arithmetic average, the valdg,=d.,,  amplitudes of both wave functions and fractons behave quite
should be observed in computer simulations, where by defisimilarly in / and inr space, and we can distinguish three
nition only few configurations can be taken into accountlocalization regimes:

[1,17)]. If the arithmetic average is taken ovalt configura- (i) In the neighborhood of the localization center, elec-
tions, strict analogies between random walks and vibrationakons and fractons aresuperlocalized in / space,
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In(y)~—/"%v., with dy, ,>1, while the localization is not 1F ‘ ' '
exponential inr space(see alsd20]). - ()

(i) At intermediate distances from the localization center,
electrons and fractons aseiblocalizedwith exponentsy, 0.7+

anddy , close to 0.6, in both” andr space. This interme-
diate (sublocalization regime expands logarithmically with
the number of configurationd and becomes the dominant
regime for largeN. L

(i) In the asymptotic regime, finally, electrons and frac-
tons are simply exponentially localizedy, ,=dy =1, as
expected1,16]. For largeN values, however, the crossover |
to the asymptotic regime occurs at extremely large distance: = ‘ =
from the localization center, which are not accessible by 10 10
computer simulations. (W(t=64))y (W(£=256)),

The paper is organized as follows: In Sec. I, we introduce
the basic quantities of interest and the averaging procedure FIG. 1. Distributions P of the arithmetic averages
we employed. In Secs. Ill and IV, we present our numericaK‘I’(/)>N=[(1/N)E§:1¢(2V)(/)]“2 for electrons on critical perco-
results for electrons and fractons on critical percolation clustation clusters on the Cayley tree @ /=64 and(b) /=256 for
ters on Cayley treetSec. Ill) as well as ind=2 andd=3  N=8 (light gray), N=128 (dark gray, andN=4096 (black. The
(Sec. IV). In Sec. V, finally, we use the fact that the ampli- distributions have been normalized to their maximum. Evidently,
tudes for fixed lengths” obey a log-normal distribution to the averageg¥(/))y depend on the number of configuratioNs
derive an analytical expression for the averaged amplitude ghd fluctugte strongly from one set Nfconfigurations to the next
the wave functions at largé, which becomes rigorous in the for large”.
asymptotic regime. In the Appendix we briefly describe the

numerical methods we employed for the calculation of the 10 tréat both problems simultaneously, we will introduce
eigenfunctions. a function #,, which stands either for the amplitude

\/d’:,Ed’n,E of the electronic wave function or for the ampli-
tude |u,, ,| of the displacement of a vibrating particle, both
on a siten, for fixed E respectivelyw. For convenience, we
We consider site percolation clusters at the critical con-‘normalize” ¢, such thaty,,=1 at the localization center.
centrationp,, and assume that the motion of electrons carBy definition, the localization center is that site, where the
be described by hopping between nearest-neighbor clust@iaximum of the amplitudes occui$9].
sites. Within the tight-binding approximation, the electronic ~We are interested in a quantitative description of the way
wave function can be written as linear combination of atomicthe values of},, decrease with increasing distarncéom the
orbitals localized at the cluster sitas The coefficientsp, g localization center. The necessary averaging procedure con-
in the linear combination satisfy the time independent tight-Sists of three steps: In the first step we average, for each
binding equatiorj21,16,3 configurationv=1,2, ... N, the values ofy? at fixed dis-
tancer from the localization center. The resulting function
RN z,b(zy)(r) characterizes the spatial decrease of our quantity of
E‘ﬁ“!E_% Vom®me 1) interest in the considereath cluster. In the second step, for
obtaining the mean spatial decrease, we aveczt%ger) over

where the sum runs over all nearest-neighbor sitesf site N configurations,
n. The hopping term¥,, ,, are constant for nearest neighbor

cluster sites and zero otherwise; for simplicity we tadke 1 1 5
as energy unit. (W(r)n= NVZI Pi,)(r). )

The “quantum percolation equation(l) is similar to the
scalar vibration equation, where we assume that each cluster

site has a unit mass, and nearest-neighbor sitasdm are case herg the resulting values fofW (r))y will depend on

aB_\Ba_ _ , . / :
cqupled by a(scala) force constant\/n’m Vim=Vam- N e special set o configurations considered and will fluc-
this case, different components of displacements decouple .- from set to set. An example is shown in Fig. 1, where

and we obtain the same equation for all componen().  \ye consider, for electrons on the Cayley tfeee Sec. Il

The ansataly(t) =U, ,exp(-it) leads to the time indepen- e gistribution of the value&¥ (/))y, for different sets oN

dent vibration equatiop22,4,1q configurations. Evidently, the distributions are logarithmi-
cally broad, i.e., self-averaging fails. In this case, to obtain

Wt E,Vn,m) Up o= E’Vn,mum,wa ?) thetypica_l valye of(‘W(r))y, we are led, in the t_hird step, to

m m the logarithmic average over many setsh\otonfigurations,

i.e., we average (W (r))y over many sets oN eigenfunc-

which up to the diagonal terms is identical to Edy), if the  tions[17]. The resulting function

energy eigenvalug is replaced by- w?. As above, we will

chooseV=1 in the following. T(r)=expglIn{(T(r))n) (4)

Il. MODELS AND AVERAGING PROCEDURE

If the system is not self-averagin@vhich we find is the
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FIG. 2. Decrease OIfN(/)Eexp(ln[(l/N)E';‘:11/1(2V)(/)]/2> versus//\ , for (a) electrons andb) fractons on critical percolation clusters
on the Cayley tree foN=1 (bottom ling, N=8, N=128, and\N=4096(top line). In all cases, 1.5 1P clusters of/ .= 1200 shells were
considered in the averaging procedure. The values fqr(a) A ,=6.5 and(b) A ,=5.8, have been determined from the distributions in Fig.
4. The straight dashed lines have the slae,=1 and are shown for comparison. In the insets, the effective local expodegnts
determined numerically from the slopes of the curves, are shown vefbus. The symbols correspond to the effective numbers of
configurationg(stars,N=1; squaresN=8; triangles,N=128; and circlesN=4096) and the lines are guides to the eye.

can be considered as the typical average. In the followingmum chemical length/,=1200 and have calculated
we shall discuss exclusively this “typical average ower 2x10° eigenfunctions of Eqg1) and(2) for both electrons
configurations™ defined by Eq4). and fractons. Each eigenfunction was calculated on a differ-
To characterize the localization further, we will also con-ent cluster configuration for eigenvalueE=1.7 and
sider the decrease @f, in / space, and averagk, over all  4»2=~0.1, which were chosen to yield similar localization
sitesn at the topological distancé from the maximum. The  |engths\ , for electrons and fractons. Cayley trees cannot be
resulting functionW (/") describes the decrease #fin  embedded in space with a finite dimension, but the topologi-
chemical/” space. The average ovirconfigurations gives cal distance” on the cluster structure can always be deter-
(W(/)n [see Eq.(3)], and we shall consider its typical mined. Thus, we restrict ourselves fospace.
value W (/) here[see Eq(4)]. Figure 2 showsV (/) for (a) electrons andb) fractons
The question, whictN should be taken for a realistic for four differentN values. While both electronic wave func-
macroscopic system, depends on the quantity of interest angbns and fractons behave quite similarly here, the actual ab-
cannot be answered unambiguously. If, for example, one isolute values depend drastically on the number of configura-
interested in the mean electronic wave function at a givemionsN included in the averaging procedure. In addition, one
energyE or fractons of a given frequenay in a system of can see that the decay ®fy(/) is not simple exponential
N, atoms, one averages over &l states within a certain (d,, ,=1) and several decay regimes with different effective
energy or frequency “band” arounk or w. Clearly,N is  exponents can be distinguished. The slopes of the curves
proportional toN, . The width of the “band”(and the ratio yield the effectivedy, , and are shown in the insets. Since
of N andN,) will depend on the physical situation, for ex- there is no self-averaging, a single value for the localization
ample on temperature or on some other parameters. Since thggth A, cannot be defined from the averaged eigenfunc-
mean amplitudes depend sensitively Nin the results for  tions¥ (/). So we determinedl, from the distributions of
physical quantities of interest in mesoscopic or even macrothe amplitudesy, for several fixed” by fitting them with a
scopic systems may depend on the system size or on othrjg-normal distribution as will be discussed at the end of this

parameters changing the effectiie section. This procedure is the only way to define a unique
localization length.
lIl. PERCOLATION CLUSTERS ON THE CAYLEY TREE For N>1, we can distinguish between three different lo-

calization regimes: In the first regime, farbelow\ ,/2, we
We consider percolation clusters at criticality on Cayleyfind a faster than exponential decay with an effective expo-
trees with coordination number=3; the percolation thresh- nentdy, ,>1. This regime is not shown in the insets and it is
old is p,=1/(z—1)=0.5[10]. Since the clusters have no more pronounced for fractoi&ig. 2b)]. At the end of this
loops, a very fast calculation of the eigenfunctions is pos+egime we observe some oscillations in the averaged eigen-
sible (see the Appendix for details of the calculalioiVe  functions, which are the remainder of the plane wave solu-
have grown clusters by the Leath metHd®] with a maxi-  tions of Egs.(1) and(2) in ordered systems.
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T To see how the crossover length (N) increases withN,
we have plotted” (N) versus lod\ in Fig. 3. Sincedy, , <1
in the second regime ardl, ,>1 in the third, the values of
/'« (N) correspond to those lengtiiSwheredy, , intercepts
with unity. The straight lines in Fig. 3 indicate simple loga-
rithmic dependences of «(N) on N. This logarithmicN
dependence of the crossover length seems to be an inherent
feature of strongly fluctuating quantities, which are charac-
terized by a logarithmically broad distribution. It was first
. found in the context of random walks on self-similar struc-
LAl el tures[17], and occurs also in relaxation phenomena of the
10° 10" 10° 10° 10* Kohlrausch typg23].
N Figure 4 shows, for the case of electrons, typical ex-

FIG. 3. Crossover lengths, (N)/\ .o andr . (N)/\,o versus anles of the/’cﬂstrlbutlons af,, for various/ values fror_n
N for electronge, filled symbols and continuous lineand fractons /_ 15 (a) to /=500 (d). For fractons, they have ‘?l“a"ta'
(f, open symbols and dashed lines critical percolation clusters tlyely the same shape: The figure shows that, for Ia_fgﬂfle
on the Cayley tredcircles and on the square lattigstars for/  histogram of the amplitudes;, obeys a log-normal distribu-
space and triangles far space in a semilogarithmic plot/’y (N) tion,
corresponds to those length§ where the effective localization ) )
exponentdy, , of ¥ (/) intercepts with unity; the same definition H(x,/)= 1 exr{ _ (X=71\,)
holds forr(N). The values foix ., \,, ando have been deter- ’ m o/ I\,
mined from the distributions of the amplitudésee Figs. 4, 6, and :
8). The points for fractons on the square lattice have been shifted ughere x= — Iny(#)=0. For the energy eigenvalle=1.7
by 4 units on the”, axis. The straight lines are fits to the data with consjdered, the parametexs=6.5 ando= 2.7 describe the
the form/,(N) =\ so(c,+ c,InN), wherec,=0.68 for the Cayley  gjstributions very well for sufficiently large’. For fractons
tree andc,=0.79 for the square lattice. with »?=0.1 we found\ ,=5.8 ando=3.1. Since the fitting
parameteh , turns out to be independent 6f it can be used
as localization length. The insets of Fig. 4 show that the
agreement between the numerical distribution and (&y.
becomes nearly perfect for larget values, indicating that
the distribution follows Eq(5) asymptotically(except for the
irrelevant largex values. In the next section we show that
fhis complex localization behavior occurs also in critical per-
colation structures id=2 andd=3 which contain loops on
all length scales.

: ©)

The second localization regime ranges fraty=\ , up to
a characteristic crossover length (N), whereW¥ (/) de-
parts from the common straight line. In this regime, we find
a stretched exponential dec#ysublocalization”) with an
effective exponenty, ,=0.62 for both electrons and frac-
tons. This sublocalization regime expands strongly as th
number of configurationdl increases. Note that in both the
first and the second regim®, (/) is independent oN.

In the third regime, for/>/(N), self-averaging fails
and¥ (/) depends explicitly oiN. In the beginning of this
regime,dy, , is considerably larger than 1, corresponding to
a faster than exponential decé{superlocalization”). Only We consider electrons and fractons @ite)-percolation
for extremely large/ values the simple exponential decay clusters ind=2 (square latticeandd= 3 (simple cubic lat-
(dy ,=1) predicted in former work1,16] is reached. For tice) at the percolation threshold. We have used the Leath
N=1, in contrast, simple exponential decay is observed almethod to generate large clusters with a maximum chemical
ready for “relatively small” values of/, leaving out the length/,,=400 and used the Lanczos methsée the Ap-
intermediate localization regime completely. pendi® to determine the desired eigenfunctions of EdS.

IV. PERCOLATION CLUSTERS IN d=2 AND d=3
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FIG. 4. Scaled histograi(x,/) =[ 7o/ I\ ,]Y?H(x,/) of the amplitude valueg, (/) =[ ¢} e, ] for electrons on critical perco-
lation clusters on the Cayley tree at fixed chemical lengthfsom the center of localization(a) /=15, (b) /=50, (c) /=150, and(d)
/'=500. The continuous lines represent Gaussian fits to the data according(® ®ith the parameters ,=6.5 ando=2.7. In the insets,
the same distributions are shown in a logarithmic scalé.cobfigurations were considered to calculate the distributions.



56 ELECTRONS AND FRACTONS ON PERCOLATID. .. 6697

o1 o e
10 \ 10
N O\ D
‘PN(£1) ; ..... < . X3 ‘PN(F) é
10 [ 10 |
100 e e 0B N
= 0 1 0 ”
10 10 10 10 1
iy i 10
FIG. 5./ space ind=2: The decrease oF (/) versus//\, FIG. 7.r space ird=2: The decrease oF y(r) versusr/\, for
for electrons(continuous linesand fractongdotted lineg on criti-  electrons(continuous linesand fractons(dotted line$ on critical

cal percolation clusters ind=2 for several N values percolation clusters il=2 for the same eigenfunctions ard
(N=1, 16, 256, 2048 for electrons ami=1, 16, 256 for fractons; values as in Fig. 5. The values far, \,=4.5 for electrons and
from the bottom to the top For electrons, % 10° and for fractons  \,=5.4 for fractons, have been determined from the corresponding
10° eigenfunctions on clusters &f,,,,= 400 shells were considered distributions (see Fig. 8 In the intermediate regime, a dashed
in the averaging procedure. As in Fig. 2, the valuesMfor A ,=8.4  straight line indicates a fit to the data with an effective localization
for electrons and ,= 10.6 for fractons, have been determined from exponenty, ,=0.52. The straight dashed line drawn below the nu-
the corresponding distributior(see Fig. 6. In the intermediate re- merical results has the sloplg, ;=1 and is shown for comparison.
gime the dashed straight line indicates a fit to the data with an
effective localization exponemt, ,=0.53. The straight dashed line sublocalization ¢y ,<1) in the intermediate regime
drawn below the numerical results has the slake,=1 and is \,</</«(N), and transient superlocalization with de-
shown for comparison. pendence in the third regimg>/(N), converging to
simple exponential localizatiord(, ,=1) for /—%. In the

and (2). The iterative method applied to the Cayley treeintermediate regime, the effective sublocalization exponent
could not be used here, sincedr-2 and 3 the clusters have dv,/=0.53 has approximately the same value for electrons
loops on all scales. and fractons. This value is significantly smaller than the one

Figure 5 shows our numerical results #4,(/) for elec- ?;t?ee C?eyele%geg‘évggsev?efﬁggﬁﬁg Tsoh.g\?v)ﬁ 'ior\f If:?r tge
trons and fractons id=2. The figure is analogous to Fig. 2, yiey 9-

i . A : increases logarithmically with, hence the regime of sublo-
and it shows that again the localization behavior for eleCtron%alization becomes the dominant one for large valueN.of

and fractons in topological space is quite complex, and very ; -

- ) : Figure 6 shows the histogram of the amplitudgs for
similar to the_ behav[or observed fqr p_ercolatl-on on the Cay'fixed‘:; for fractons. The figurge is analogous tg Figﬁffor the
ley tree. Again, we find three localization regimes K>1: cayjey tree. The continuous lines correspond to the log-
Superlocalization dy,,>1) in the first regime/<\,/2,  normal distribution function Eq(5) with the parameters

\,=10.6 ando=2.4 for fractons { ,=8.4 ando=2.1 for
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FIG. 6. / space ind=2: Scaled histogramHyx,/)= v, v,
X[wo/IN,Y?H(x,/) of the amplitude values,(/) for fractons
on critical percolation clusters id=2 at fixed chemical lengthg’ FIG. 8. r space ind=2: Scaled histogramH(x,r)=

from the localization cente(a) /=128 and(b) ~/=280. The con- X[ war/x,]YH(x,r) of the amplitude valueg,(r) for fractons on
tinuous lines represent Gaussian fits to the data according t®Eq. critical percolation clusters im=2 at fixed lengthsr from the

with the parameters ,=10.6 ando=2.4. In the lower parts of the localization centera) r =64 and(b) r = 150, corresponding to Fig.
figure the same distributions are shown in a logarithmic scafe. 106. The continuous lines represent Gaussian fits to the data according
configurations were considered to calculate the distributions. to Eq. (6) with the parametera,=5.4, 0=2.4, andA=0.65.
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o o the crossover length,(N) (Fig. 3 has the same simple
10 logarithmic dependence on the number of configuratidns
that we found already in” space.

The reason for this can be understood from the distribu-
tion of the valuesy,,, now for fixed distanca from the
localization center. Two examples of the distribution are
shown in Fig. 8; the figure corresponds to Fig. 6 for the
space. The continuous lines represent fits to the left part of
the histogram by the log-normal distribution

AR

(0)
10

-10
10

A l{—(X—rl)\r)2
ex
Vorin, or/N

FIG. 9. / space ind=3: The decrease oF (/) versus//x,  [similar toH(x,7) in Eq. (5)] with the parameters,=5.4,
for electrons(continuous linesand fractongdotted lines on criti- ~ 0=2.4, andA=0.65 for fractons X,=4.5 ando=2.1 for
cal percolation clusters id=3 for two effective numbers of con- electron$. The right part corresponds to very small values of
figurations:N=1 (bottom line and N~ 10° (top lines. Approxi- ¥, and therefore is not essential for the calculation of ar-
mately 18 eigenfunctions on clusters of =250 shells were ithmetical averages. Since the histogram deviates from the
considered in the averaging procedure. The valugs-8.2 and  log-normal form in this irrelevant area, we included an addi-
A,=10.2 are used for electrons and fractons, respectively. Aional factorA into our ansatz Eq6) in order to fit the left
dashed straight line indicates a fit to the data in the intermediatpart of the histogram. Since the factaris only weaklyr
regime with an effective localization exponedy, ,=0.59. The  dependent and close to unity, it does not influence rthe
straight dashgd line drawn below t.he numerical results has the S'ORS’ependence o¥ \(r). The relevant left part of the distribu-
dy =1 and is shown for comparison. tion, which corresponds to large valuesif, can be fitted
well by Eq. (6). This results in a localization behavior in
electrons. We see again that, for large values/fthe log- ~ space similar to the behavior irf space, and explains the
normal distribution fits the numerical distribution quite well, *€sémblance of Figs. 5 and 7. . :
and we can anticipate that for sufficiently largevalues Eq. Figures 9 and 10 show our numerical results ¥og(/)
(5) becomes exact. and \PN(r) for electrons anq fractons on sng percolauon
Next we consider localization in space ind=2. Since _clusters ind=3. Again, we dlscove_r a decay S|m|Iar_to that
the distribution ofy, is logarithmically broad in” space, M d=2 and on the Cayley tree, with a pronounced interme-

and ¥,(/) depends orN, the analytical arguments men- diate (sublocalizatiomn regime forN>1. The effective local-

tioned in the Introduction cannot be applied here. ization exponentsdy, ,=0.59 anddy,=0.63, hold over

Figures 7 and 8 show our numerical results for the local- o than one order of magnitude dnandr and are equal

ization behavior of electrons and fractonsrispace, which within the error bars. The values are similardg =0.62,
: . o onsrispace, we obtained on the Cayley tree, and larger thardin2.
is very similar to the localization behavior ii space(shown

o . - " Again the typical average for one configuratiod,(/),
in Figs. 5 and §with nearly the same effective localization gp,q\ys simple exponential localization asymptotically.
exponent @y ,=0.52) in the sublocalization regime. Also

o AT

101 H(x,r)= (6)

10°

iy

V. THEORETICAL DESCRIPTION

. i Since we know analytically the distribution of dominating
amplitudesy, (/) at chemical distance$>X\ ,, we can cal-
culateW (/) for large 7/ by simple integration. In particu-
lar, we can obtainV (/) in the asymptotic regime which
was not accessible numerically. We can also estimate the
way ¥ (#) depends oM. The calculation is valid for both
electronic wave functions and fractons on critical percolation
clusters on the Cayley tree anddr-2 (andd=3), since the
same log-normal distributiotd (x,/) [Eq. (5)] fits in all
these casegonly the two parameters, and o have to be
- 1 adapted
10 I 10 If we average over all configurations, the resulting quan-
! tity ¥..(/) is related toH(x,7) by

| KRR g

10
W, (1)
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||||/||| !

10
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FIG. 10. r space ind=3: The decrease o¥ \(r) versusr/\, -
for electrons(continuous linesand fractongdotted lineg in d=3 ‘Pi(/):f e 2H(x,/)dx. 7
for the same eigenfunctions amdl values as in Fig. 9. Here, the 0
values\,=3.6 and\,=4.4 are used for electrons and fractons,
respectively. In the intermediate regime, a dashed straight line inFor afinite numberN of configurations, the total number of
dicates a fit to the data with an effective localization exponentsites at distance’ from the localization center is identical to
dy ,=0.63. N-(N,) with (N,)=a/% 1 (a=const). Hered, is the
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ALY B BERLLUL B severalN. As predicted, Eq(11) describes the localization
behavior of ¥\(/) in the asymptotic large/ regime
[7>7«(N)].

Equation(11) is not valid for small/” values, for which
the lower integration limitx,;,(#,N) in Eqg. (10) tends to
zero. For sufficiently smalt” values, the real distribution of
i, deviates from the log-normal distributiod (x,/") for
smallx values corresponding to largk,, as can be seen in
Figs. 4 and 6. In this case, the log-normal approximation is
] inappropriate, and therefore cannot yield exact results for

[ 5 E InD). o
OS5 B il v vl Despite this, the log-normal approximation can be used

10' ¢ 10° 10° for obtaining a qualitative picture o¥ (/) at intermediate
! / values, wherex,,(/,N)=0. It can be shown that the
integration of Eq.(7) yields an effective localization expo-
(a) electrons on the Cayley tree affg fractons ind=2. The sym- nentdy, ,~0.6, V\_’hiCh qu"e n_icely agrees with 'Fhe _exponents
bols are from the numerical calculations fot=16 (squares W€ found numencglly in the intermediate Igcallzgtlon regime
N =256 (triangles, and[only in (a)] N=4096 (circles. The lines ~ A/</</x(N). Since the number of configuratiohsdoes
represent the analytical result for the largeegime[Eq. (11) with ot appear in Eq(7), it is evident that¥ (/) does not

1.5

FIG. 11. Effective localization exponents, , versus//\ , for

N=16, 256, and 4096 depend orN in this regime, in agreement with our numerical
finding.
topological (or chemical dimension of the percolation clus-  Furthermore, we can obtain a qualitative description of

ters, which describes how the number of cluster sitae  the logarithmicN dependence of , , if we identify /' (N)
“mass” M) scales with/, M(/)~/%. Its values are Wwith the largest distance/ for which the condition
d,=1.678 (1.84) for percolation id=2 (3), andd,=2 for  Xmin(#,N)=0 holds. This yield§with Eq. (9)]

the Cayley tree. Clearly, those valuesxaf — Ing,(«) with a

too small probability H(x,/)<1/N(N,)) are unlikely to /' «(N)=\,a[2InN+(2d,—3)In/«(N)
occur inN typical configurations, and the condition —In(a2main ]2, (12)
H(Xmin,/)=L1(N(N))=1/(aN/ 1) tS)

which is an implicit equation for/«(N). As described
above, we cannot expect to find a quantitative agreement
here, since the log-normal distribution functiblfx,/) does
X 7 sN) not fit well for very smallx. For N>1 Eq.(12) reduces to

determines a lower cutoff value

7 (N)=\oInN
=max{0//\,~(a/I\,)IN[aN/ %32\ [(wa) ]}
7O ARt LR S (L TONC)

which replaces the lower integration bound in Ead) for (13

finite N. Hence, for finiteN, Eq. (7) becomes ] o o )
with a logarithmic dependence dhsimilar to our numerical
® results, since the second term depends weakly dbecause
‘Pﬁ(/)=f e ZH(x,/)dx. (100  1.68<d,<2).
Xmin( /) It is remarkable that by this simple approach, the essential
features of the localization phenomenon, sublocalization in

The integration can be performed straightforwardly andthe intermediate regime, crossover to superlocalized behav-

gives ior (that depends on the number of configuratidfls and
, . final approach to simple exponential behavior, are repro-
=—exg———|| 1—erfi \/— g
n(7) V2 X N, N, It is important to note that Eq11) enables us to deter-

mine the behavior of’ (/) also for those values dfl and
12 / that are not numerically accessible. Figure 11 shdys
B \/ln[aN/d/3/2W‘//(7m)]}) ' 1D btained from Eq(11) for four values ofN and very large”
values. For/~10°\ ., which is far above the numerically
Equation (11) is supposed to be rigorous for sufficiently accessible range, we firtd, ,~ 1.08(for N=10% in the third
large/ values ¢’>\ /), where the distribution ofy, is de-  regimg. Thus, the asymptotic valugy =1 will only be
scribed by the log-normal distributiod (x,/). The typical reached for extremely largé, whereW (/) is smaller than
average¥ (/) can be deduced by settifg=1. 1071% |t is remarkable that for a macroscopically large
In Fig. 11 we compare the effective exponedtg, for  number of configurationsN~10°® the crossover length
electrons on percolation clusters on the Cayley tree and irf «(N) remains finitef /', (10°®~10%]. Thus, the thirdsu-
d=2 derived from Eq.11) with our numerical results for perlocalization regime with theN dependence of the aver-
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— VI. CONCLUSION

We have investigated the mean amplitudes of electronic
wave functions and fractons on percolation clusters at criti-
cality. We found that the typical averages oberconfigura-
tions in/ andr space¥ (<) and¥(r), decay in a rather
complicated, but surprisingly similar way. In the intermedi-
ate localization regime, which expands logarithmically with

10
‘I’N(r) i

10 |

oo ITRIETEE

10 Eiu Y the number of configurationd, localization is characterized
1 00 101 by effective localization exponents considerably lower than
r/A 1. In the asymptotic regime, the mean amplitudes depend

logarithmically onN. The exponents governing localization
FIG. 12. r space ind=2: Comparison of the directly deter- in both regimes are identic&lithin the error barsfor elec-

mined W (r) versusr/\, for fractons on critical percolation clus- trons and fractons. ) .
ters ind=2 (Iines) and the‘lfN(r) calculated from\IfN(/) by nu- Further research work is needed in order to see, for ex-

merical integration of Eq(14) (symbol3. The data for two different @mple, how the sublocalization regime influences the ther-

numbers of configurationsl=1 (circley and N=256 (star$ are  Mally activated hopping conductivity, or if ti¢ dependence

included. of the amplitudes in the asymptotic regime leads to an
anomalous size dependence of physical quantities. A ques-
. . L tion of great interest concerns the localization behavior of
aged eigenfunctions is still present even for a MAaCroSCOP 4 tons and electrons aboye. It is believed that fractons

cally large numb/er of configurations, although its_beginningshow transitions from localized to extended behaviat 2
moves to large/ value_s and the secon@ublocalization (see, e.gf10]), while electrons do ndi]. This seems to be
regime becomes most important. contradicting to our results at the percolation threshold,

Our theoretical description is also appropriate ispace, here the amplitudes of electronic wave functions and frac-
even though the distribution af, for fixed r has a more  tons can hardly be distinguished.

complicated shape than ifi space. But the log-normal dis-
tribution [Eq. (6)] fits the left shoulder of the distribution of
¥(r) quite well. So the calculations in this section can be ACKNOWLEDGMENTS

transferred to' space simply by replacing by r, A, by A, We like to thank our colleague Dr. H.E. Roman for many
andd, by the fractal dimension in Egs.(7) to (13). From  yseful discussions. We are very much indebted to him for
this approach, since the widtbsof the distributions turn out  pringing Ref.[24] to our attention and for explaining to us
to be the same, if only the left shoulder of the distributions isthe numerical algorithm used therein. This work was sup-
taken into account in the fitting procedure, we obtain theported by the Deutsche Forschungsgemeinschaft.
same localization exponent ihand inr spacedy, ,=dy .
We also confirmed this numerically within the error bars.

It has been shown in Ref§1,17], see alsq[18], that APPENDIX: NUMERICAL METHODS

¥n(#) and¥y(r) are related by the convolution In this appendix we present details of the calculation of

the eigenfunctions we performed for Eq4) and (2) and
. briefly describe the algorithm we used for the Cayley tree
‘I’N(f):f S/ NV ()d/, (14)  Structures. Throughout the whole paper we considered elec-
/ min(r .N) tronic eigenfunctions with eigenvalues=1.7+0.05 and
vibrational excitations with frequency eigenvalues
»?=0.1+0.01. Since the exact eigenvalues are not the same
if the distribution of the amplitude valueg, at fixed chemi- in every cluster configuration, we could not stick to a fixed
cal distance” is sufficiently narrow. Here/ ,io(r,N) is de-  value of E respectivelyw, but we had to consider solutions
fined as the minimal path distance connecting two clustewith eigenvalues in the small intervals. The valles 1.7
sites at distance, and the structure functios(/|r) is de- and w?=0.1 were chosen in order to obtain electrons and
fined as the probability that two cluster sites at spatial disfractons with similar localization lengths. Some special val-
tancer are separated by a chemical distance betwéemd  ues(e.g.,E?=0,1,2 for electronshad to be avoided, because
/+d/, divided byd/". ¢(/|r) is a well known single hump strong degeneration and energy dependencies of the localiza-
function (see, e.g.[10]). tion lengths orE occur therg21,6].
It is interesting to note that even though the basic assump- For d=2 andd=3, the eigenfunctions were calculated
tion leading to Eq(14) (narrow distribution ofy,, at fixed  with Lanczos’ algorithn{25] on clusters with up to % 10*
/) is strongly violated here, the equation can neverthelessites with quadruple precisiofexcept for the fractons in
serve as a very good approximation. This is shown in Fig. 121=3, where only double precision was used to save com-
for fractons on critical percolation clustersdir=2 for N=1 puter timg. For the Cayley tree, the percolation structures
andN=256. The symbols represent the data points obtainedre loopless, and this enabled us to construct a considerably
by numerical integration of Eq4), the lines are the nu- faster, iterative algorithm for the calculation of a single
merical results shown already in Fig. 7. The agreement beeigenfunction in a given configuration. The algorithm ex-
tween data points and lines is satisfactory. tends earlier work24] on the tight-binding equation for the
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Anderson model iml=1 to the Cayley tree. Here, we present and Eqs.(1) and(2) are linear equations.
only a brief description of the iterative algorithm for a Cay- To determine the values ob,, at all cluster sites, we
ley tree with coordination number=3. For a detailed de- employed Eq(1) [respectively Eq(2)] for all sitesn with
scription, see Ref.26]. chemical distance’= 1. The final equation for site 0, which

In the first step, we assign the valdg=1 to all perim-  remains to be considered, is only satisfiedifs an eigen-
eter sitesn (we denote electroand fracton eigenfunctions  fynction, or equivalently, ifE (respectivelyw) is an eigen-
by ¢ in this description for simplicity We start with the  yajue. If this is not the case, the whole procedure is repeated
sites at maximum chemical distanegya, from the origin,  fom the beginning with a different starting value Bf(re-
use the desired eigenvaluenergy E or frequencyw) as  gpectivelyw), until the final equation for sita=0 is satis-
mput,/ and employ !Eq(.l) Lrespectively Eq(Z)] for the §|tes fied within the required accuracy. In practice, the problem
N at/ max 0 determine the values,, assigned to the sites reduces to searching a zero of the equation for the site at

at chemical dlstancefz/max—l. In the next step, these n=0, which is achieved when the relative error in this equa-
values are used as input to calculate the valueggfat Co L .
tion is smaller than a limite. In our calculations we used

chemical distance’ = 'ray—2 from the center, and so on. In =100 Finally, the eigenfunctior, is “normalized” so

the / ath step, finally, we determine the value ¢f. 5 L .
A problem occurs at the branching points, where asite thatI¢”o| =1 for the localization center sitey.

at chemical distance has not one, but two nearest neighbor ~ We like to note that this algorithm can be used quite gen-
sitesn at chemical distance+ 1, since then the procedure erally for the calculation of eigenfunctions of linear equa-
assigns two—possibly different—valuég, ;) and ¢y - to tions with nearest neighbor coupling on loopless structures.
site m. This ambiguity can be eliminated simply by multi- The main advantages of the algorithm, compared with the
plying all ¢, values in the second branch @y 1)/ ¢(m2), Lanczos algorithm, are its speed and the fact that much
such that both nearest neighbor siteg’at1 give the same larger systems can be investigated. Also, double precision is
value ¢, 1) for the branching siten. This procedure is pos- sufficient for the calculation of the localized eigenfunctions
sible, since the branches are not interconnected abovmsite even down to regions with amplitudes smaller than 8
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