
PHYSICAL REVIEW E DECEMBER 1997VOLUME 56, NUMBER 6
Electrons and fractons on percolation structures at criticality:
Sublocalization and superlocalization

Jan W. Kantelhardt and Armin Bunde
Institut für Theoretische Physik, Justus-Liebig-Universita¨t Gießen, D-35392 Gießen, Germany

~Received 29 May 1997; revised manuscript received 29 August 1997!

We discuss the localization of electronic eigenfunctions and vibrational excitations~‘‘fractons’’ ! on self-
similar percolation clusters at criticality on the Cayley tree, ind52, and ind53, both in topological (l ) and
in Euclidian (r ) space. We find that the localization behavior of electrons and fractons is very similar, but does
depend on the type of average performed and on the number of configurationsN taken into account. It can be
characterized by three different localization regimes. In the first regime, at small distancesl and r from the
localization center, electrons and fractons are superlocalized inl space, while the localization is not exponen-
tial in r space. In the intermediate regime, which is the most important one, we find stretched exponential
localization ~‘‘sublocalization’’!, ln^c&;2l dC,l or ;2r dC,r with effective localization exponents
dC,l 'dC,r'0.6. In the third regime, for largel and r , the averages strongly depend on the number of
configurations, even inl space, and superlocalization (dC,l ,dC,r.1) is observed, converging to simple
exponential behavior asymptotically. To understand this complicated localization behavior, we present an
analytical calculation of ln̂c& for the third regime, which is based on the fact that the local amplitudes at large
distances from the localization center obey a log-normal distribution.@S1063-651X~97!12012-8#

PACS number~s!: 64.60.Cn, 71.55.Jv, 63.50.1x
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I. INTRODUCTION

It is well known that in disordered structures, due to t
absence of translational symmetry, electronic wave functi
and vibrational excitations can be localized@1–4# i.e., their
amplitudes decrease with increasing distance from a loca
tion center for certain energiesE and frequenciesv, respec-
tively. Apart from its principal relevance, the knowledge
the localization behavior in disordered self-similar system
relevant for a large number of both experimental and th
retical issues, ranging from the disorder-induced me
insulator transition@3,5,6# to the thermally activated hoppin
conductivity in disordered systems@7–9#. A standard model
for disordered systems is the percolation model@10,11#.
Close to the critical concentration, self-similar structur
~‘‘fractals’’ ! occur, and it is an open question, how the av
aged eigenfunctions decay spatially on these structures
how this decay depends on the averaging procedure, e
cially on the numberN of configurations taken into accoun
in the average.

It is well accepted that asymptotically the mean amp
tudes decay proportional to exp@2const3r dc,r# with increas-
ing ‘‘air’’ distance r from the localization center, but differ
ent groups report on different localization exponentsdc,r
@12–17#. For a ‘‘quenched’’ logarithmic average, where th
fluctuations of the amplitudescn(r ) at siten at fixed dis-
tancer are strongly diminished by averaging over lncn(r),
dc,r5dmin has been predicted@16#, wheredmin is the fractal
dimension of the shortest path on the percolation cluster c
necting two distant points on the cluster. It has been arg
that also for the arithmetic average, the valuedc,r5dmin
should be observed in computer simulations, where by d
nition only few configurations can be taken into accou
@1,17#. If the arithmetic average is taken overall configura-
tions, strict analogies between random walks and vibratio
561063-651X/97/56~6!/6693~9!/$10.00
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excitations suggestdc,r51 @15,10#. Most numerical calcula-
tions seem to be in accord withdc,r51 @13#, while one
simulation favorsdc,r5dmin @14#.

Most previous analytical results are based on the assu
tion that the chemical distancel from the localization center
~rather than the air distancer ) characterizes the localizatio
behavior. The chemical distance~also called topological dis-
tance! between two points on a percolation cluster is defin
as the shortest path distance on the cluster. Assuming tha
amplitudescn at sites at fixed chemical distancel from the
localization center have a very narrow distribution and de
proportional to exp@2const3l #, the behavior of the ampli-
tudes in ‘‘r space’’ can be derived from the behavior in ‘‘l

space’’ by a convolution integral, which contains the stru
ture function of percolation clustersf(l ur ) @18,17,10#. The
analytic treatment yields two distinct localization regime
dC,r51 for intermediater @r 1,r ,r 3(N)# and dC,r5dmin

for larger @r .r 3(N)#. Here,r 1 is of the order of the local-
ization lengthl r , andr 3(N) increases logarithmically with
N @17#.

The aim of this paper is twofold: First, for checking th
basic assumption of the analytical theory cited above,
study, for both electronic wave functions and vibrational e
citations ~‘‘fractons’’ ! on large percolation clusters at crit
cality, the distribution of the amplitudes at fixed chemic
distancel from the localization center, where the eigenfun
tions take their maximum@19#, and investigate the decay o
the mean amplitudes as a function ofl . Then, we study the
decay of the mean amplitudes as a function of the spa
distancer from the localization center. We find that the me
amplitudes of both wave functions and fractons behave q
similarly in l and in r space, and we can distinguish thre
localization regimes:

~i! In the neighborhood of the localization center, ele
trons and fractons aresuperlocalized in l space,
6693 © 1997 The American Physical Society
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6694 56JAN W. KANTELHARDT AND ARMIN BUNDE
ln^c&;2l dC,l , with dC,l .1, while the localization is not
exponential inr space~see also@20#!.

~ii ! At intermediate distances from the localization cent
electrons and fractons aresublocalizedwith exponentsdC,l
anddC,r close to 0.6, in bothl and r space. This interme
diate ~sublocalization! regime expands logarithmically with
the number of configurationsN and becomes the dominan
regime for largeN.

~iii ! In the asymptotic regime, finally, electrons and fra
tons are simply exponentially localized,dC,l 5dC,r51, as
expected@1,16#. For largeN values, however, the crossov
to the asymptotic regime occurs at extremely large distan
from the localization center, which are not accessible
computer simulations.

The paper is organized as follows: In Sec. II, we introdu
the basic quantities of interest and the averaging proce
we employed. In Secs. III and IV, we present our numeri
results for electrons and fractons on critical percolation cl
ters on Cayley trees~Sec. III! as well as ind52 andd53
~Sec. IV!. In Sec. V, finally, we use the fact that the amp
tudes for fixed lengthsl obey a log-normal distribution to
derive an analytical expression for the averaged amplitud
the wave functions at largel , which becomes rigorous in th
asymptotic regime. In the Appendix we briefly describe t
numerical methods we employed for the calculation of
eigenfunctions.

II. MODELS AND AVERAGING PROCEDURE

We consider site percolation clusters at the critical c
centrationpc , and assume that the motion of electrons c
be described by hopping between nearest-neighbor clu
sites. Within the tight-binding approximation, the electron
wave function can be written as linear combination of atom
orbitals localized at the cluster sitesn. The coefficientsfn,E
in the linear combination satisfy the time independent tig
binding equation@21,16,3#

Efn,E5(
m

8Vn,mfm,E , ~1!

where the sum runs over all nearest-neighbor sitesm of site
n. The hopping termsVn,m are constant for nearest neighb
cluster sites and zero otherwise; for simplicity we takeV51
as energy unit.

The ‘‘quantum percolation equation’’~1! is similar to the
scalar vibration equation, where we assume that each clu
site has a unit mass, and nearest-neighbor sitesn andm are
coupled by a~scalar! force constantVn,m

a,b5Vn,m
b,a5Vn,m . In

this case, different components of displacements deco
and we obtain the same equation for all componentsun(t).
The ansatzun(t)5un,vexp(2ivt) leads to the time indepen
dent vibration equation@22,4,10#

S 2v21(
m

8Vn,mDun,v5(
m

8Vn,mum,v , ~2!

which up to the diagonal terms is identical to Eq.~1!, if the
energy eigenvalueE is replaced by2v2. As above, we will
chooseV51 in the following.
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To treat both problems simultaneously, we will introdu
a function cn , which stands either for the amplitud
Afn,E* fn,E of the electronic wave function or for the ampl
tude uun,vu of the displacement of a vibrating particle, bo
on a siten, for fixed E respectivelyv. For convenience, we
‘‘normalize’’ cn such thatcn51 at the localization center
By definition, the localization center is that site, where t
maximum of the amplitudes occurs@19#.

We are interested in a quantitative description of the w
the values ofcn decrease with increasing distancer from the
localization center. The necessary averaging procedure
sists of three steps: In the first step we average, for e
configurationn51,2, . . . ,N, the values ofcn

2 at fixed dis-
tancer from the localization center. The resulting functio
c (n)

2 (r ) characterizes the spatial decrease of our quantity
interest in the considerednth cluster. In the second step, fo
obtaining the mean spatial decrease, we averagec (n)

2 (r ) over
N configurations,

^C~r !&N5A1

N(
n51

N

c~n!
2 ~r !. ~3!

If the system is not self-averaging~which we find is the
case here!, the resulting values for̂C(r )&N will depend on
the special set ofN configurations considered and will fluc
tuate from set to set. An example is shown in Fig. 1, wh
we consider, for electrons on the Cayley tree~see Sec. III!,
the distribution of the valueŝC(l )&N for different sets ofN
configurations. Evidently, the distributions are logarithm
cally broad, i.e., self-averaging fails. In this case, to obt
the typical value of^C(r )&N , we are led, in the third step, to
the logarithmic average over many sets ofN configurations,
i.e., we average ln̂C(r)&N over many sets ofN eigenfunc-
tions @17#. The resulting function

CN~r ![expŠln^C~r !&N‹ ~4!

FIG. 1. Distributions P of the arithmetic averages
^C(l )&N5@(1/N)(n51

N c (n)
2 (l )#1/2 for electrons on critical perco-

lation clusters on the Cayley tree at~a! l 564 and~b! l 5256 for
N58 ~light gray!, N5128 ~dark gray!, andN54096 ~black!. The
distributions have been normalized to their maximum. Eviden
the averageŝC(l )&N depend on the number of configurationsN
and fluctuate strongly from one set ofN configurations to the nex
for large l .
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56 6695ELECTRONS AND FRACTONS ON PERCOLATION . . .
FIG. 2. Decrease ofCN(l )[exp̂ ln@(1/N)(n51
N c (n)

2 (l )#/2& versusl /l l for ~a! electrons and~b! fractons on critical percolation cluster
on the Cayley tree forN51 ~bottom line!, N58, N5128, andN54096~top line!. In all cases, 1.53106 clusters ofl max51200 shells were
considered in the averaging procedure. The values forl l , ~a! l l 56.5 and~b! l l 55.8, have been determined from the distributions in F
4. The straight dashed lines have the slopedC,l 51 and are shown for comparison. In the insets, the effective local exponentsdC,l

determined numerically from the slopes of the curves, are shown versusl /l l . The symbols correspond to the effective numbers
configurations~stars,N51; squares,N58; triangles,N5128; and circles,N54096) and the lines are guides to the eye.
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can be considered as the typical average. In the follow
we shall discuss exclusively this ‘‘typical average overN
configurations’’ defined by Eq.~4!.

To characterize the localization further, we will also co
sider the decrease ofcn in l space, and averagecn over all
sitesn at the topological distancel from the maximum. The
resulting functionC (n)(l ) describes the decrease ofc in
chemicall space. The average overN configurations gives
^C(l )&N @see Eq.~3!#, and we shall consider its typica
valueCN(l ) here@see Eq.~4!#.

The question, whichN should be taken for a realisti
macroscopic system, depends on the quantity of interest
cannot be answered unambiguously. If, for example, on
interested in the mean electronic wave function at a gi
energyE or fractons of a given frequencyv in a system of
Na atoms, one averages over allN states within a certain
energy or frequency ‘‘band’’ aroundE or v. Clearly, N is
proportional toNa . The width of the ‘‘band’’~and the ratio
of N andNa) will depend on the physical situation, for ex
ample on temperature or on some other parameters. Sinc
mean amplitudes depend sensitively onN, the results for
physical quantities of interest in mesoscopic or even ma
scopic systems may depend on the system size or on o
parameters changing the effectiveN.

III. PERCOLATION CLUSTERS ON THE CAYLEY TREE

We consider percolation clusters at criticality on Cayl
trees with coordination numberz53; the percolation thresh
old is pc51/(z21)50.5 @10#. Since the clusters have n
loops, a very fast calculation of the eigenfunctions is p
sible ~see the Appendix for details of the calculation!. We
have grown clusters by the Leath method@10# with a maxi-
g,
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n
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mum chemical lengthl max51200 and have calculate
23106 eigenfunctions of Eqs.~1! and~2! for both electrons
and fractons. Each eigenfunction was calculated on a dif
ent cluster configuration for eigenvaluesE.1.7 and
v2.0.1, which were chosen to yield similar localizatio
lengthsl l for electrons and fractons. Cayley trees cannot
embedded in space with a finite dimension, but the topolo
cal distancel on the cluster structure can always be det
mined. Thus, we restrict ourselves tol space.

Figure 2 showsCN(l ) for ~a! electrons and~b! fractons
for four differentN values. While both electronic wave func
tions and fractons behave quite similarly here, the actual
solute values depend drastically on the number of configu
tionsN included in the averaging procedure. In addition, o
can see that the decay ofCN(l ) is not simple exponentia
(dC,l 51) and several decay regimes with different effecti
exponents can be distinguished. The slopes of the cu
yield the effectivedC,l and are shown in the insets. Sinc
there is no self-averaging, a single value for the localizat
length l l cannot be defined from the averaged eigenfu
tionsCN(l ). So we determinedl l from the distributions of
the amplitudescn for several fixedl by fitting them with a
log-normal distribution as will be discussed at the end of t
section. This procedure is the only way to define a uniq
localization length.

For N@1, we can distinguish between three different l
calization regimes: In the first regime, forl belowl l /2, we
find a faster than exponential decay with an effective ex
nentdC,l .1. This regime is not shown in the insets and it
more pronounced for fractons@Fig. 2~b!#. At the end of this
regime we observe some oscillations in the averaged eig
functions, which are the remainder of the plane wave so
tions of Eqs.~1! and ~2! in ordered systems.
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6696 56JAN W. KANTELHARDT AND ARMIN BUNDE
The second localization regime ranges froml 1'l l up to
a characteristic crossover lengthl 3(N), whereCN(l ) de-
parts from the common straight line. In this regime, we fi
a stretched exponential decay~‘‘sublocalization’’! with an
effective exponentdC,l >0.62 for both electrons and frac
tons. This sublocalization regime expands strongly as
number of configurationsN increases. Note that in both th
first and the second regime,CN(l ) is independent ofN.

In the third regime, forl .l 3(N), self-averaging fails
andCN(l ) depends explicitly onN. In the beginning of this
regime,dC,l is considerably larger than 1, corresponding
a faster than exponential decay~‘‘superlocalization’’!. Only
for extremely largel values the simple exponential deca
(dC,l 51) predicted in former work@1,16# is reached. For
N51, in contrast, simple exponential decay is observed
ready for ‘‘relatively small’’ values ofl , leaving out the
intermediate localization regime completely.

FIG. 3. Crossover lengthsl 3(N)/l l s and r 3(N)/l rs versus
N for electrons~e, filled symbols and continuous lines! and fractons
~f, open symbols and dashed lines! on critical percolation clusters
on the Cayley tree~circles! and on the square lattice~stars forl

space and triangles forr space! in a semilogarithmic plot.l 3(N)
corresponds to those lengthsl , where the effective localization
exponentdC,l of CN(l ) intercepts with unity; the same definitio
holds for r 3(N). The values forl l , l r , ands have been deter
mined from the distributions of the amplitudes~see Figs. 4, 6, and
8!. The points for fractons on the square lattice have been shifte
by 4 units on thel 3 axis. The straight lines are fits to the data wi
the forml 3(N)5l l s(c11c2lnN), wherec250.68 for the Cayley
tree andc250.79 for the square lattice.
e

l-

To see how the crossover lengthl 3(N) increases withN,
we have plottedl 3(N) versus logN in Fig. 3. SincedC,l ,1
in the second regime anddC,l .1 in the third, the values of
l 3(N) correspond to those lengthsl wheredC,l intercepts
with unity. The straight lines in Fig. 3 indicate simple log
rithmic dependences ofl 3(N) on N. This logarithmicN
dependence of the crossover length seems to be an inh
feature of strongly fluctuating quantities, which are char
terized by a logarithmically broad distribution. It was fir
found in the context of random walks on self-similar stru
tures @17#, and occurs also in relaxation phenomena of
Kohlrausch type@23#.

Figure 4 shows, for the case of electrons, typical e
amples of the distributions ofcn for variousl values from
l 515 ~a! to l 5500 ~d!. For fractons, they have qualita
tively the same shape. The figure shows that, for largel , the
histogram of the amplitudescn obeys a log-normal distribu
tion,

H~x,l !5
1

Apsl /l l

expF2
~x2l /l l !2

sl /l l
G , ~5!

wherex52 lncn(l )>0. For the energy eigenvalueE51.7
considered, the parametersl l 56.5 ands52.7 describe the
distributions very well for sufficiently largel . For fractons
with v250.1 we foundl l 55.8 ands53.1. Since the fitting
parameterl l turns out to be independent ofl , it can be used
as localization length. The insets of Fig. 4 show that
agreement between the numerical distribution and Eq.~5!
becomes nearly perfect for largerl values, indicating that
the distribution follows Eq.~5! asymptotically~except for the
irrelevant largex values!. In the next section we show tha
this complex localization behavior occurs also in critical p
colation structures ind52 andd53 which contain loops on
all length scales.

IV. PERCOLATION CLUSTERS IN d52 AND d53

We consider electrons and fractons on~site!-percolation
clusters ind52 ~square lattice! andd53 ~simple cubic lat-
tice! at the percolation threshold. We have used the Le
method to generate large clusters with a maximum chem
lengthl max5400 and used the Lanczos method~see the Ap-
pendix! to determine the desired eigenfunctions of Eqs.~1!

up
FIG. 4. Scaled histogramHs(x,l )5@psl /l l #1/2H(x,l ) of the amplitude valuescn(l )5@fn,E* fn,E#1/2 for electrons on critical perco-
lation clusters on the Cayley tree at fixed chemical lengthsl from the center of localization:~a! l 515, ~b! l 550, ~c! l 5150, and~d!
l 5500. The continuous lines represent Gaussian fits to the data according to Eq.~5! with the parametersl l 56.5 ands52.7. In the insets,
the same distributions are shown in a logarithmic scale. 106 configurations were considered to calculate the distributions.
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56 6697ELECTRONS AND FRACTONS ON PERCOLATION . . .
and ~2!. The iterative method applied to the Cayley tr
could not be used here, since ind52 and 3 the clusters hav
loops on all scales.

Figure 5 shows our numerical results forCN(l ) for elec-
trons and fractons ind52. The figure is analogous to Fig. 2
and it shows that again the localization behavior for electr
and fractons in topological space is quite complex, and v
similar to the behavior observed for percolation on the C
ley tree. Again, we find three localization regimes forN@1:
Superlocalization (dC,l .1) in the first regimel ,l l /2,

FIG. 5. l space ind52: The decrease ofCN(l ) versusl /l l

for electrons~continuous lines! and fractons~dotted lines! on criti-
cal percolation clusters in d52 for several N values
(N51, 16, 256, 2048 for electrons andN51, 16, 256 for fractons;
from the bottom to the top!. For electrons, 33103 and for fractons
103 eigenfunctions on clusters ofl max5400 shells were considere
in the averaging procedure. As in Fig. 2, the values forl l , l l 58.4
for electrons andl l 510.6 for fractons, have been determined fro
the corresponding distributions~see Fig. 6!. In the intermediate re-
gime the dashed straight line indicates a fit to the data with
effective localization exponentdC,l 50.53. The straight dashed lin
drawn below the numerical results has the slopedC,l 51 and is
shown for comparison.

FIG. 6. l space in d52: Scaled histogramHs(x,l )5
3@psl /l l #1/2H(x,l ) of the amplitude valuescn(l ) for fractons
on critical percolation clusters ind52 at fixed chemical lengthsl
from the localization center:~a! l 5128 and~b! l 5280. The con-
tinuous lines represent Gaussian fits to the data according to Eq~5!
with the parametersl l 510.6 ands52.4. In the lower parts of the
figure the same distributions are shown in a logarithmic scale.3

configurations were considered to calculate the distributions.
s
ry
-

sublocalization (dC,l ,1) in the intermediate regime
l l ,l ,l 3(N), and transient superlocalization withN de-
pendence in the third regimel .l 3(N), converging to
simple exponential localization (dC,l 51) for l →`. In the
intermediate regime, the effective sublocalization expon
dC,l >0.53 has approximately the same value for electro
and fractons. This value is significantly smaller than the o
for the Cayley tree~where we founddC,l >0.62). As for the
Cayley tree the crossover lengthl 3(N) ~shown in Fig. 3!
increases logarithmically withN, hence the regime of sublo
calization becomes the dominant one for large values ofN.

Figure 6 shows the histogram of the amplitudescn for
fixed l for fractons. The figure is analogous to Fig. 4 for t
Cayley tree. The continuous lines correspond to the l
normal distribution function Eq.~5! with the parameters
l l 510.6 ands52.4 for fractons (l l 58.4 ands52.1 for

n

FIG. 7. r space ind52: The decrease ofCN(r ) versusr /l r for
electrons~continuous lines! and fractons~dotted lines! on critical
percolation clusters ind52 for the same eigenfunctions andN
values as in Fig. 5. The values forl r , l r54.5 for electrons and
l r55.4 for fractons, have been determined from the correspond
distributions ~see Fig. 8!. In the intermediate regime, a dashe
straight line indicates a fit to the data with an effective localizat
exponentdC,r50.52. The straight dashed line drawn below the n
merical results has the slopedC,r51 and is shown for comparison

FIG. 8. r space in d52: Scaled histogramHs(x,r )5
3@psr /l r #

1/2H(x,r ) of the amplitude valuescn(r ) for fractons on
critical percolation clusters ind52 at fixed lengthsr from the
localization center:~a! r 564 and~b! r 5150, corresponding to Fig
6. The continuous lines represent Gaussian fits to the data acco
to Eq. ~6! with the parametersl r55.4, s52.4, andA50.65.
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6698 56JAN W. KANTELHARDT AND ARMIN BUNDE
electrons!. We see again that, for large values ofl , the log-
normal distribution fits the numerical distribution quite we
and we can anticipate that for sufficiently largel values Eq.
~5! becomes exact.

Next we consider localization inr space ind52. Since
the distribution ofcn is logarithmically broad inl space,
and CN(l ) depends onN, the analytical arguments men
tioned in the Introduction cannot be applied here.

Figures 7 and 8 show our numerical results for the loc
ization behavior of electrons and fractons inr space, which
is very similar to the localization behavior inl space~shown
in Figs. 5 and 6! with nearly the same effective localizatio
exponent (dC,r>0.52) in the sublocalization regime. Als

FIG. 9. l space ind53: The decrease ofCN(l ) versusl /l l

for electrons~continuous lines! and fractons~dotted lines! on criti-
cal percolation clusters ind53 for two effective numbers of con
figurations:N51 ~bottom lines! andN'103 ~top lines!. Approxi-
mately 103 eigenfunctions on clusters ofl max5250 shells were
considered in the averaging procedure. The valuesl l 58.2 and
l l 510.2 are used for electrons and fractons, respectively
dashed straight line indicates a fit to the data in the intermed
regime with an effective localization exponentdC,l 50.59. The
straight dashed line drawn below the numerical results has the s
dC,l 51 and is shown for comparison.

FIG. 10. r space ind53: The decrease ofCN(r ) versusr /l r

for electrons~continuous lines! and fractons~dotted lines! in d53
for the same eigenfunctions andN values as in Fig. 9. Here, th
values l r53.6 andl r54.4 are used for electrons and fracton
respectively. In the intermediate regime, a dashed straight line
dicates a fit to the data with an effective localization expon
dC,r50.63.
l-

the crossover lengthr 3(N) ~Fig. 3! has the same simple
logarithmic dependence on the number of configurationsN
that we found already inl space.

The reason for this can be understood from the distri
tion of the valuescn , now for fixed distancer from the
localization center. Two examples of the distribution a
shown in Fig. 8; the figure corresponds to Fig. 6 for thel
space. The continuous lines represent fits to the left par
the histogram by the log-normal distribution

H~x,r !5
A

Apsr /l r

expF2~x2r /l r !
2

sr /l r
G ~6!

@similar to H(x,l ) in Eq. ~5!# with the parametersl r55.4,
s52.4, andA50.65 for fractons (l r54.5 ands52.1 for
electrons!. The right part corresponds to very small values
cn , and therefore is not essential for the calculation of
ithmetical averages. Since the histogram deviates from
log-normal form in this irrelevant area, we included an ad
tional factorA into our ansatz Eq.~6! in order to fit the left
part of the histogram. Since the factorA is only weakly r
dependent and close to unity, it does not influence thr
dependence ofCN(r ). The relevant left part of the distribu
tion, which corresponds to large values ofcn , can be fitted
well by Eq. ~6!. This results in a localization behavior inr
space similar to the behavior inl space, and explains th
resemblance of Figs. 5 and 7.

Figures 9 and 10 show our numerical results forCN(l )
and CN(r ) for electrons and fractons on site percolati
clusters ind53. Again, we discover a decay similar to th
in d52 and on the Cayley tree, with a pronounced interm
diate~sublocalization! regime forN@1. The effective local-
ization exponentsdC,l >0.59 and dC,r>0.63, hold over
more than one order of magnitude inl and r and are equal
within the error bars. The values are similar todC,l >0.62,
we obtained on the Cayley tree, and larger than ind52.
Again the typical average for one configuration,C1(l ),
shows simple exponential localization asymptotically.

V. THEORETICAL DESCRIPTION

Since we know analytically the distribution of dominatin
amplitudescn(l ) at chemical distancesl @l l , we can cal-
culateCN(l ) for large l by simple integration. In particu-
lar, we can obtainCN(l ) in the asymptotic regime which
was not accessible numerically. We can also estimate
way CN(l ) depends onN. The calculation is valid for both
electronic wave functions and fractons on critical percolat
clusters on the Cayley tree and ind52 ~andd53), since the
same log-normal distributionH(x,l ) @Eq. ~5!# fits in all
these cases~only the two parametersl l and s have to be
adapted!.

If we average over all configurations, the resulting qua
tity C`(l ) is related toH(x,l ) by

C`
2 ~ l !5E

0

`

e22xH~x,l !dx. ~7!

For afinite numberN of configurations, the total number o
sites at distancel from the localization center is identical t
N•^Nl & with ^Nl &5al dl 21 (a5const). Here,dl is the

A
te

pe

,
n-
t



-

n

ly

d

f

is
for

ed

-
ts
e

al

of

ent

tial
in
av-

ro-

-

e

-

56 6699ELECTRONS AND FRACTONS ON PERCOLATION . . .
topological~or chemical! dimension of the percolation clus
ters, which describes how the number of cluster sites~the
‘‘mass’’ M ) scales with l , M (l );l dl . Its values are
dl >1.678 (1.84) for percolation ind52 (3), anddl 52 for
the Cayley tree. Clearly, those values ofx52 lncn(l ) with a
too small probability (H(x,l ),1/N^Nl &) are unlikely to
occur inN typical configurations, and the condition

H~xmin ,l !51/~N^Nl &!51/~aNl dl 21! ~8!

determines a lower cutoff value

xmin~ l ,N!

5max$0,l /l l 2A~sl /l l !ln@aNl dl 23/2Al l /~ps!#%,
~9!

which replaces the lower integration bound in Eq.~7! for
finite N. Hence, for finiteN, Eq. ~7! becomes

CN
2 ~ l !5E

xmin~ l ,N!

`

e22xH~x,l !dx. ~10!

The integration can be performed straightforwardly a
gives

CN~ l !>
1

A2
expF ~s/221!l

l l
G S 12erfHAsl

l l

2Aln@aNl dl 23/2Al l /~ps!#J D 1/2

. ~11!

Equation ~11! is supposed to be rigorous for sufficient
large l values (l @l l ), where the distribution ofcn is de-
scribed by the log-normal distributionH(x,l ). The typical
averageC1(l ) can be deduced by settingN51.

In Fig. 11 we compare the effective exponentsdC,l for
electrons on percolation clusters on the Cayley tree an
d52 derived from Eq.~11! with our numerical results for

FIG. 11. Effective localization exponentsdC,l versusl /l l for
~a! electrons on the Cayley tree and~b! fractons ind52. The sym-
bols are from the numerical calculations forN516 ~squares!,
N5256 ~triangles!, and @only in ~a!# N54096 ~circles!. The lines
represent the analytical result for the large-l regime@Eq. ~11! with
N516, 256, and 4096#.
d

in

severalN. As predicted, Eq.~11! describes the localization
behavior of CN(l ) in the asymptotic largel regime
@ l @l 3(N)#.

Equation~11! is not valid for smalll values, for which
the lower integration limitxmin(l ,N) in Eq. ~10! tends to
zero. For sufficiently smalll values, the real distribution o
cn deviates from the log-normal distributionH(x,l ) for
small x values corresponding to largecn , as can be seen in
Figs. 4 and 6. In this case, the log-normal approximation
inappropriate, and therefore cannot yield exact results
CN(l ).

Despite this, the log-normal approximation can be us
for obtaining a qualitative picture ofCN(l ) at intermediate
l values, wherexmin(l ,N)50. It can be shown that the
integration of Eq.~7! yields an effective localization expo
nentdC,l '0.6, which quite nicely agrees with the exponen
we found numerically in the intermediate localization regim
l l ,l ,l 3(N). Since the number of configurationsN does
not appear in Eq.~7!, it is evident thatCN(l ) does not
depend onN in this regime, in agreement with our numeric
finding.

Furthermore, we can obtain a qualitative description
the logarithmicN dependence ofl 3 , if we identify l 3(N)
with the largest distancel for which the condition
xmin(l ,N)50 holds. This yields@with Eq. ~9!#

l 3~N!5l l s@2lnN1~2dl 23!lnl 3~N!

2 ln~a2ps/l l !#/2, ~12!

which is an implicit equation forl 3(N). As described
above, we cannot expect to find a quantitative agreem
here, since the log-normal distribution functionH(x,l ) does
not fit well for very smallx. For N@1 Eq. ~12! reduces to

l 3~N!'l l s lnN

1l l s ln@l
l

dl 21
sdl 22~ lnN!dl 23/2/~aAp!#,

~13!

with a logarithmic dependence onN similar to our numerical
results, since the second term depends weakly onN ~because
1.68<dl <2).

It is remarkable that by this simple approach, the essen
features of the localization phenomenon, sublocalization
the intermediate regime, crossover to superlocalized beh
ior ~that depends on the number of configurationsN), and
final approach to simple exponential behavior, are rep
duced.

It is important to note that Eq.~11! enables us to deter
mine the behavior ofCN(l ) also for those values ofN and
l that are not numerically accessible. Figure 11 showsdC,l
obtained from Eq.~11! for four values ofN and very largel
values. Forl '103l l , which is far above the numerically
accessible range, we finddC,l '1.08~for N5103 in the third
regime!. Thus, the asymptotic valuedC,l 51 will only be
reached for extremely largel , whereCN(l ) is smaller than
102100. It is remarkable that for a macroscopically larg
number of configurationsN'1023 the crossover length
l 3(N) remains finite@ l 3(1023)'103#. Thus, the third~su-
perlocalization! regime with theN dependence of the aver
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aged eigenfunctions is still present even for a macrosc
cally large number of configurations, although its beginn
moves to largel values and the second~sublocalization!
regime becomes most important.

Our theoretical description is also appropriate inr space,
even though the distribution ofcn for fixed r has a more
complicated shape than inl space. But the log-normal dis
tribution @Eq. ~6!# fits the left shoulder of the distribution o
cn(r ) quite well. So the calculations in this section can
transferred tor space simply by replacingl by r , l l by l r ,
anddl by the fractal dimensiondf in Eqs.~7! to ~13!. From
this approach, since the widthss of the distributions turn out
to be the same, if only the left shoulder of the distributions
taken into account in the fitting procedure, we obtain
same localization exponent inl and inr space,dC,l 5dC,r .
We also confirmed this numerically within the error bars.

It has been shown in Refs.@1,17#, see also@18#, that
CN(l ) andCN(r ) are related by the convolution

CN~r !5E
l min~r ,N!

`

f~ l ur !CN~ l !dl , ~14!

if the distribution of the amplitude valuescn at fixed chemi-
cal distancel is sufficiently narrow. Here,l min(r ,N) is de-
fined as the minimal path distance connecting two clus
sites at distancer , and the structure functionf(l ur ) is de-
fined as the probability that two cluster sites at spatial d
tancer are separated by a chemical distance betweenl and
l 1dl , divided bydl . f(l ur ) is a well known single hump
function ~see, e.g.,@10#!.

It is interesting to note that even though the basic assu
tion leading to Eq.~14! ~narrow distribution ofcn at fixed
l ) is strongly violated here, the equation can neverthe
serve as a very good approximation. This is shown in Fig.
for fractons on critical percolation clusters ind52 for N51
andN5256. The symbols represent the data points obtai
by numerical integration of Eq.~14!, the lines are the nu
merical results shown already in Fig. 7. The agreement
tween data points and lines is satisfactory.

FIG. 12. r space ind52: Comparison of the directly deter
minedCN(r ) versusr /l r for fractons on critical percolation clus
ters ind52 ~lines! and theCN(r ) calculated fromCN(l ) by nu-
merical integration of Eq.~14! ~symbols!. The data for two different
numbers of configurationsN51 ~circles! and N5256 ~stars! are
included.
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VI. CONCLUSION

We have investigated the mean amplitudes of electro
wave functions and fractons on percolation clusters at c
cality. We found that the typical averages overN configura-
tions in l andr space,CN(l ) andCN(r ), decay in a rather
complicated, but surprisingly similar way. In the intermed
ate localization regime, which expands logarithmically w
the number of configurationsN, localization is characterized
by effective localization exponents considerably lower th
1. In the asymptotic regime, the mean amplitudes dep
logarithmically onN. The exponents governing localizatio
in both regimes are identical~within the error bars! for elec-
trons and fractons.

Further research work is needed in order to see, for
ample, how the sublocalization regime influences the th
mally activated hopping conductivity, or if theN dependence
of the amplitudes in the asymptotic regime leads to
anomalous size dependence of physical quantities. A q
tion of great interest concerns the localization behavior
fractons and electrons abovepc . It is believed that fractons
show transitions from localized to extended behavior ind52
~see, e.g.,@10#!, while electrons do not@3#. This seems to be
contradicting to our results at the percolation thresho
where the amplitudes of electronic wave functions and fr
tons can hardly be distinguished.
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APPENDIX: NUMERICAL METHODS

In this appendix we present details of the calculation
the eigenfunctions we performed for Eqs.~1! and ~2! and
briefly describe the algorithm we used for the Cayley tr
structures. Throughout the whole paper we considered e
tronic eigenfunctions with eigenvaluesE51.760.05 and
vibrational excitations with frequency eigenvalu
v250.160.01. Since the exact eigenvalues are not the sa
in every cluster configuration, we could not stick to a fix
value ofE respectivelyv, but we had to consider solution
with eigenvalues in the small intervals. The valuesE51.7
and v250.1 were chosen in order to obtain electrons a
fractons with similar localization lengths. Some special v
ues~e.g.,E250,1,2 for electrons! had to be avoided, becaus
strong degeneration and energy dependencies of the loca
tion lengths onE occur there@21,6#.

For d52 and d53, the eigenfunctions were calculate
with Lanczos’ algorithm@25# on clusters with up to 43104

sites with quadruple precision~except for the fractons in
d53, where only double precision was used to save co
puter time!. For the Cayley tree, the percolation structur
are loopless, and this enabled us to construct a consider
faster, iterative algorithm for the calculation of a sing
eigenfunction in a given configuration. The algorithm e
tends earlier work@24# on the tight-binding equation for the
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Anderson model ind51 to the Cayley tree. Here, we prese
only a brief description of the iterative algorithm for a Ca
ley tree with coordination numberz53. For a detailed de-
scription, see Ref.@26#.

In the first step, we assign the valuefn51 to all perim-
eter sitesn ~we denote electronand fracton eigenfunctions
by f in this description for simplicity!. We start with the
sites at maximum chemical distancel max from the origin,
use the desired eigenvalue~energyE or frequencyv) as
input, and employ Eq.~1! @respectively Eq.~2!# for the sites
n at l max to determine the valuesfm assigned to the sitesm
at chemical distancel 5l max21. In the next step, thes
values are used as input to calculate the values offm at
chemical distancel 5l max22 from the center, and so on. I
the l maxth step, finally, we determine the value off0.

A problem occurs at the branching points, where a sitem
at chemical distancel has not one, but two nearest neighb
sitesn at chemical distancel 11, since then the procedur
assigns two—possibly different—valuesf (m,1) andf (m,2) to
site m. This ambiguity can be eliminated simply by mult
plying all fn values in the second branch byf (m,1) /f (m,2) ,
such that both nearest neighbor sites atl 11 give the same
valuef (m,1) for the branching sitem. This procedure is pos
sible, since the branches are not interconnected above sm
ar

. B

ys

-

n

R

.

et
r

and Eqs.~1! and ~2! are linear equations.
To determine the values offn at all cluster sites, we

employed Eq.~1! @respectively Eq.~2!# for all sitesn with
chemical distancel >1. The final equation for site 0, which
remains to be considered, is only satisfied iff is an eigen-
function, or equivalently, ifE ~respectivelyv) is an eigen-
value. If this is not the case, the whole procedure is repea
from the beginning with a different starting value ofE ~re-
spectivelyv), until the final equation for siten50 is satis-
fied within the required accuracy. In practice, the proble
reduces to searching a zero of the equation for the sit
n50, which is achieved when the relative error in this equ
tion is smaller than a limite. In our calculations we used
e510210. Finally, the eigenfunctionfn is ‘‘normalized’’ so
that ufn0

u251 for the localization center siten0.

We like to note that this algorithm can be used quite g
erally for the calculation of eigenfunctions of linear equ
tions with nearest neighbor coupling on loopless structu
The main advantages of the algorithm, compared with
Lanczos algorithm, are its speed and the fact that m
larger systems can be investigated. Also, double precisio
sufficient for the calculation of the localized eigenfunctio
even down to regions with amplitudes smaller than 102100.
red
rate
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@20# J. Dräger, St. Russ, and A. Bunde, Europhys. Lett.31, 425
~1995!.

@21# S. Kirkpatrick and T.P. Eggarter, Phys. Rev. B6, 3598~1972!.
@22# S. Alexander and R. Orbach, J. Phys.~Paris! Lett. 43, L625

~1982!.
@23# A. Bunde, S. Havlin, J. Klafter, G. Gra¨ff, and A. Shehter,

Phys. Rev. Lett.78, 3338~1997!.
@24# H.E. Roman and C. Wiecko, Z. Phys. B62, 163 ~1986!.
@25# C. Lanczos, J. Res. Natl. Bur. Stand.45, 255~1950!; J. Cullum

and R. Willoughby,Lanczos Algorithms for Large Symmetr
Eigenvalue Computations~Birkhaeuser, Boston, 1985!.

@26# J. W. Kantelhardt, Diploma thesis~in German!, University of
Gießen, 1996~unpublished!.


